2 research outputs found

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure

    Identificação estatística de regiões codificadoras de proteínas em seqüências de DNA

    No full text
    The large number of genome sequencing projects in progress and the resulting increase in the volume of uncharacterized data has motivated the search for more precise and efficient computacional methods for identifying the structures that compose the DNA of living beings. In particular, due to its great importance, the search for protein coding regions has been the focus of research for at least twenty years. Coding regions carry in its nucleotides the information necessary to the cellular structures to produce proteins, fundamental component of most living organisms. The identification of coding regions in DNA sequences is still a difficult problem since the complex cellular mechanisms involved in the process of protein production are not completely known. In this dissertation, we have developed a statistical method for the identification of protein coding regions. The method is based on Bayes s theorem applied to strings of k consecutive DNA bases, where k is a parameter specified by the user. To compute the conditional and a priori probabilities needed by Bayes s theorem, we use certain hypotheses on the independence of codons and bases, and on the minimum size of coding and non-coding regions, that reduce the computational cost and the size of probability tables. In performed tests the proposed method has presented promising results.O elevado número de projetos de seqüenciamento de genomas em andamento e a conseqüente geração de grandes quantidades de dados descaracterizados tem motivado a busca por métodoscomputacionais mais precisos e eficientes para a identificação das estruturas que compõem o DNA dos seres vivos. Em especial, devido a sua grande importância, destaca-se a busca por regiões codificadoras de proteínas, que vem sendo o foco de pesquisas há pelo menos vinte anos. Estas regiões armazenam em seus nucleotídeos a informação necessária às estruturas celulares para a fabricação das proteínas, componente fundamental da maioria dos organismos vivos. A identificação das regiões codificadoras nas seqüências de DNA ainda é um problema de difícil solução, uma vez que os complexos mecanismos celulares envolvidos no processo de fabricação das proteínas não são completamente conhecidos. Neste trabalho, desenvolvemos um método estatístico para a identificação das regiões codificadoras de proteínas. O método é baseado no teorema de Bayes aplicado a trechos de k bases consecutivas do DNA, onde k é um parâmetro especificado pelo usuário. Para o cálculo das probabilidades condicionais e a priori necessárias para o teorema de Bayes, usamos certas hipóteses sobre independência de bases e códons, e sobre o tamanho mínimo de regiões codificadoras e não-codificadoras, que reduzem o custo computacional e o tamanho das tabelas de probabilidade. Em testes realizados, o método proposto apresentou resultados promissores
    corecore